
Typesetting semantics in LATEX

Aidan Malanoski

February 15, 2023

The goal of this document is to provide readers with basic skills for typesetting
semantics in LATEX. I have tried not to assume too much LATEX knowledge from
readers, so it should be accessible even to people starting out in LATEX. Feel free to
copy-paste commands and such from the .tex file.

For a lot of semantics typesetting, you’ll be in math mode. When you want
your math-y stuff (including logic) to be on the same line as your text (i.e., you
want an “in-line” equation), you enter math mode by putting a single dollar sign $
on either side of the math-y stuff. For example, the code $2 \times 2 = 4$ gives
2 × 2 = 4. If you want your math-y stuff to be on its own line, then you use two
dollar signs instead of one. For example, the code $$2 \times 2 = 4$$ gives the
following:

2× 2 = 4

If your math-y stuff needs to be on multiple lines, then you can use the \align
environment from the mathtools package (the amsmath package also provides an
\align environment, but we’ll use mathtools since it provides other useful function-
ality). To load the package, you put \usepackage{mathtools} in the “preamble,”
which is the part of the .tex file before the \begin{document} command. Generally
speaking, you load other LATEX packages the same way.

To create an align environment, you first type \begin{align}. As the name
suggests, the align environment lets you align the lines of your math-y stuff. To do
this, you oput an ampersand (&) before the character where you want the lines to
be aligned. You separate lines using two backslashes (\\). This is LATEX’s general
“new line” command—it’s not specific to the align environment). When you’re
done writing your math-y stuff, you put \end{align}. Here’s an example of some
multi-line math-y stuff made in an align environment.

1

2x+ 4 = 14 (1)
2x = 10 (2)
x = 5 (3)

To make this, I used the code in (1). Note that by putting ampersands before
the equals signs in the code, I aligned the equations on the equals signs.

(1) \begin{align}
2x + 4 &= 14 \\
2x &= 10 \\
x &= 5
\end{align}

If you don’t want the “tags” (i.e., the line numbers) on the right side of the page,
then you can use the align* environment instead. Just replace \begin{align}
with \begin{align*} and replace \end{align} with \end{align*}. You can add
or change the tags using the tag command. Type this command before the new
line command \\ on the line where you want it to go. For example, if I change the
first line of (1) to 2x + 4 &= 14 \tag{bloop} \\, I get the following:

2x+ 4 = 14 (bloop)
2x = 10 (4)
x = 5 (5)

As alluded to above, you need to be in math mode to type logic symbols. The
command \land will give you the logical conjunction (‘and’) symbol ∧, \lor will
give you the logical disjunction (‘or’) symbol ∨, \rightarrow will give you the
material implication (‘if then’) symbol →, and \leftrightarrow will you give you
the the biconditional (‘if and only if’) symbol ↔.

You’ll probably be using set theory, too. Once again, you’ll need to be in
math mode. The \cup command produces the union symbol ∪, \cap produces the
intersection symbol ∩, \subseteq produces the subset symbol ⊆, \subset produces
the proper subset symbol ⊂, and \emptyset produces the empty set symbol ∅.
However, you can get a prettier empty set symbol ∅ by using the \varnothing
command from the amssymb package.

Curly brackets are produced with the commands \{ and \}. Typing the curly
brackets directly, without the backslash, will not work: at best, they won’t show

2

up, and at worst, you’ll get an error. This is because curly brackets are used by
the LATEX code to group things together and specify the scope of commands.

Angle brackets are produced with the commands \langle and \rangle for the
left angle bracket ⟨ and right angle bracket ⟩, respectively. To produce double
brackets, you need to load the package stmaryrd. The commands are \llbracket
and \rrbracket for the left bracket J and right bracket K, respectively. The com-
mands to produce angle brackets and double brackets only work in math mode.

Typing all these brackets gets old pretty fast. Fortunately, the \mathtools has
a command \DeclarePairedDelimiter that can make our life easier. It’ll be easier
to explain how this command works after seeing an example. The preamble of this
document contains the command in (2). This creates a new command \denote
that places double brackets around its input. For example, \denote{dog} givesJdogK. Note that the command goes in math mode. As you can see, plain text
entered in math mode will appear in italics; if you don’t want that, use the \textrm
command. If I change the previous example to $\denote{\textrm{dog}}$, it will
produce JdogK.
(2) \DeclarePairedDelimiter\denote\llbracket\rrbracket

Now, let’s take another look at (2). As we just saw, \DeclarePairedDelimiter
is a command that makes new commands (specifically, commands to make “delim-
iters”). To use this command, you first type \DeclarePairedDelimiter. Then you
type the name you want for the new command—in this case, \denote. Next, you
put the command to make the thing you want as the left delimiter. Here, we want
a left double bracket J, so we put \llbracket. Finally, you put the command to
make the thing you want as the right delimiter. This is a right double bracket K, so
we put \rrbracket. In the preamble to this document, I’ve also defined a command
\set for putting things in curly brackets and a command \type for putting things
in angle brackets.

Finally, you may occasionally find yourself typesetting trees while do-
ing semantics. While there a number of packages for creating trees, the
forest1 package seems to be increasingly popular. To load this package, put
\usepackage[linguistics]{forest} in the preamble. In LATEX, square brackets
are used for optional inputs to a command. In this case, we are telling the forest
package to load its settings for producing linguistic trees. To produce trees, you
create a forest environment, and then write the tree structure using bracket nota-
tion. To produce triangles, you put a comma after the node name, then put roof.
For example, (3a) produces (3b).

1http://tug.ctan.org/info/forest-quickstart/forest-quickstart.pdf

3

(3) a. [TP [DP [D [the]] [NP [sleepy dog, roof]]] [T’ [T] [VP [fell
asleep, roof]]]]

b. TP

DP

D

the

NP

sleepy dog

T’

T VP

fell asleep

If you want to annotate a node with its semantic type, then you can put the
node in curly brackets, put a new line \\ after the node label, and put the semantic
type. For example, by putting {TP\\t} instead of just TP, I can add a semantic
type annotation below the node name. The type-annotated version of (3b) is shown
in (4b), and the code that produces it is shown in (4a).

(4) a. [{TP\\t} [{DP\\e} [{D\\$\type{\type{e,t}, e}$}
[{the\\$\type{\type{e,t}, e}$}]] [{NP\\$\type{e,t}$} [sleepy
dog, roof]]] [{T’\\$\type{e,t}$} [{T\\\varnothing}]
[{VP\\$\type{e,t}$} [fell asleep, roof]]]]

b. TP
t

DP
e

D
⟨⟨e, t⟩, e⟩

the
⟨⟨e, t⟩, e⟩

NP
⟨e, t⟩

sleepy dog

T’
⟨e, t⟩

T
∅

VP
⟨e, t⟩

fell asleep

4

