

Mergers of CURE in the eastern United States

Aidan Malanoski¹, Bill Haddican^{1,2}, Cynthia Gan², Jack Lacey², Jack Lynch², Donna Shair², Andrew Shillingford³, Samuel H. Sokol², Kujege Thiam³

> ¹CUNY Graduate Center ²Queens College, CUNY ³Lehman College, CUNY

For additional questions: ajmalanoski@gmail.com. For slides: malanoski.ws.gc.cuny.edu

Introduction

Introduction

- We investigate mergers of CURE, an understudied lexical set, in the eastern United States
- We find that CURE is undergoing several conditioned mergers at different stages of completion

Vowels of interest

Lexical set ¹	IPA ²	Binary ³	
CURE	/لدى/	/uhr/	
NORTH/FORCE	\LO\	/ohr/	
NURSE	/ə /	/ʌhr/	
DOER	/u.əł	/uw.ər/	
¹ Wells 1982, except for DOER. DOER = GOOSE + lettER ² Ladefoged & Johnson 2006 ³ Labov, Ash & Boberg 2006			

Subsets of CURE

Lexical set	Description	Examples
PURE	CURE following a non-coronal and yod	cure, pure, demure
SURE	CURE following a coronal and (historic) yod	sure, endure, manure
TOUR	CURE elsewhere	tour, poor, moor

Past reports of merger

CURE-FORCE merger	 historically in the South (Kurath & McDavid 1961; Thomas 2001, 2008) New York City and the Mid-Atlantic (Labov, Ash & Boberg 2006) Western Pennsylvania (Thomas 2001)
PURE/SURE-NURSE merger	 west of the Appalachians (Thomas 2001; see also Guenter 2000) younger speakers in the South (Thomas 2008)
TOUR-FORCE merger	 west of the Appalachians (Thomas 2001; see also Guenter 2000)
TOUR-DOER merger	 west of the Appalachians (Thomas 2001)

Outline

- 1. Introduction
- 2. Method
- 3. TOUR-FORCE merger
- 4. PURE/SURE-FORCE merger
- 5. PURE/SURE-NURSE merger
- 6. Mergers with DOER
- 7. Conclusion

Methods

Overview

- Data collected in early 2024
- 737 participants recruited on Prolific
 - Self-reported native English speakers
 - From NY, NJ, PA, DE or MD
- 3-part survey hosted on phonic.ai
 - Word list
 - Rhyme judgment task (Johnson 2010)
 - Demographic survey

Word list

- CURE is too rare to use conversational data
 - Excluding *your/you're*, average of 2.59 tokens per speaker in the Corpus of New York City English (Tortora et al. in progress)
- Word list contained 50 words
 - PURE: cure, impure, obscure, pure, secure
 - SURE: brochure, endure, entrepreneur, immature, lure, manure, sure
 - TOUR: contour, detour, gourmet, poor, tour
- FLEECE, LOT and THOUGHT included as reference vowels

Rhyme judgment task

- A minimal pair task was not feasible due to the lack of minimal pairs
- 55 word pairs:
 - 5 pairs each from 8 target mergers
 - 10 distractor pairs
 - 5 rhymes (e.g., *beak-meek*)
 - 5 non-rhymes (e.g., *wet-lap*)
 - 5 /uw/-/yuw/ pairs (e.g., boot-mute)
- Presented in writing

Demographic questions

- Open response:
 - "Year of birth"
 - "Hometown (where you spent the most of your childhood)"
 - "Race/ethnicity"
 - "Gender"
 - "What language(s) did you speak at home as a child?"
 - "Highest level of education completed"

Rhyme sample

- 645 participants (92 exclusions)
 - 342 participants who accept /uw/-/yuw/ rhymes
- Birth years: 1944–2007 (median: 1992)
- Gender:
 - 362 women
 - 268 men
 - 15 other/unknown

Region	Count
Inland North	40
Mid-Atlantic	110
New York City	194
Western New England	10
Western Pennsylvania	42
Other/unknown	249

Production sample

- 253 participants
- Birth years: 1948–2007 (median: 1992)
- Gender:
 - 144 women
 - 93 men
 - 17 other/unknown

Region	Count
Inland North	12
Mid-Atlantic	45
New York City	66
Western New England	4
Western Pennsylvania	15
Other/unknown	112

Production data processing

- Formants extracted using DARLA's semiautomated pipeline (Reddy & Stanford 2015)
- Outliers removed using modified Mahalanobis distance (Stanley 2020)
- Formants normalized using ΔF (Johnson 2020, as implemented in Stanley 2023)

The TOUR-FORCE merger

TOUR is merging in perception with FORCE

A speaker was considered merged if they said that at least 4/5 of the target pairs rhymed.

TOUR is merging in perception with FORCE

Model estimates: TOUR-FORCE rhyme judgments

Due to TOUR lowering

And backing

But in the Mid-Atlantic and Western PA, FORCE raises

Model estimates: FORCE F1

TOUR is merging to FORCE

The PURE/SURE-FORCE merger

PURE and SURE pattern together

PURE/SURE mergers with FORCE in perception are waning in apparent time Frequency of mergers in perception

PURE/SURE mergers with FORCE in perception are waning in apparent time

Model estimates: PURE/SURE-FORCE rhyme judgments

The PURE/SURE-NURSE merger

PURE/SURE is merging in perception with NURSE

Particularly in the Inland North

Model estimates: PURE/SURE-NURSE rhyme judgments

Because PURE/SURE is fronting

lmer(F2 (Δ F) ~ SURE-FORCE rhyme judgments + SURE_NURSE rhyme judgments + scaled year of birth + vowel + (1 | word) + (1 + vowel | participant)). N=129. Obs=1287.

And NURSE is raising

And fronting

Converging to a high central position

Mergers with DOER

The TOUR-DOER merger is almost non-existent

Merger	Count	Percentage
None	117	18.1%
TOUR-FORCE	520	80.6%
TOUR-DOER	3	0.5%
Mixed	5	0.8%

(1

But the PURE/SURE-DOER merger is advancing

Model estimates: PURE/SURE-DOER rhyme judgments

Although it remains infrequent overall

Merger	Count	Percentage*
PURE-DOER	20	5.9%
SURE-DOER	23	6.73%

*Percentage of speakers who accept /uw/-/yuw/ rhymes.

It sometimes co-occurs with the PURE/SURE-NURSE merger

Main findings

- 1. The CURE class is disappearing in these varieties due to several processes of merger:
 - i. The TOUR-FORCE merger is nearly complete (outside the Inland North)
 - ii. The PURE/SURE-FORCE merger is somewhat frequent outside the Inland North
 - iii. The unconditioned CURE-FORCE merger is less frequent than previously reported
 - iv. The PURE/SURE-NURSE and PURE/SURE-DOER mergers are incipient changes led by speakers in the Inland North
- 2. The mergers with NURSE and DOER appear to be conditioned by yod
 - a. This suggests that the historic yod in SURE words is phonologically active
 - b. Some speakers demonstrate both mergers, suggesting that they have multiple representations for these words (cf. Thomas 2008)

References

- Guenter, Joshua Samuel. 2000. *The vowels of California English before /r/, /l/, and /ŋ/*. Berkeley: University of California, Berkeley PhD thesis.
- Johnson, Daniel Ezra. 2010. *Stability and change along a dialect boundary: The vowels of Southeastern New England*. Durham: Duke University Press.
- Johnson, Keith. 2020. The ΔF method of vocal tract length normalization for vowels. Laboratory Phonology 11(1). 10.
- Kurath, Hans & Raven I. McDavid, Jr. 1961. *The pronunciation of English in the Atlantic states.* Ann Arbor: University of Michigan Press.
- Labov, William, Sharon Ash & Charles Boberg. 2006. *The atlas of North American English: Phonetics, phonology and sound change*. Berlin: Mouton De Gruyter.
- Ladefoged, Peter & Keith Johnson. 2006. A course in phonetics, 7th edition. Stamford: Cengage Learning.
- Reddy, Sravana & James Stanford. 2015. A web application for automated dialect analysis. *Proceedings of NAACL-HLT 2015*.
- Stanley, Joseph A. 2020. The absence of a religiolect among Latter-Day Saints in Southwest Washington. In Valerie Fridland, Alicia Beckford Wassink, Lauren Hall-Lew & Tyler Kendall (eds.), *Speech in the Western states: Volume 3, understudied varieties*, 95–122. Durham: Duke University Press.
- Stanley, Joseph A. 2023. joeyr: Functions for vowel data (version 0.9).
- Thomas, Erik R. 2001. An acoustic analysis of vowel variation in New World English. Durham: Duke University Press.
- Thomas, Erik R. 2008. Rural Southern white accents. In Edgar W. Schneider (ed.), *Varieties of English, volume 2: The Americas and the Caribbean*, 87–114. Berlin: De Gruyter.
- Tortora, Christina, Cecelia Cutler, Bill Haddican, Michael Newman, Beatrice Santorini & C. E. Ariel Diertani. In progress. Corpus of New York City English (CUNY-CoNYCE). <u>https://conyce.commons.gc.cuny.edu/</u>
- Wells, J. C. 1982. Accents of English, volume 1: An introduction. Cambridge: Cambridge University Press.

Acknowledgments

- Thank you to
 - ADS organizers and reviewers
 - Participants
 - Kyle Gorman for help with task design
 - PSC-CUNY for funding

Appendix A: Race/ethnicity data

Rhyme sample

Production sample

Race/ethnicity	Count	Race/ethnicity	Count
Asian/Pacific Islander	68	Asian/Pacific Islander	26
Black/African American	84	Black/African American	35
Latinx	57	Latinx	23
White	394	White	142
Mixed	17	Mixed	8
Other/unknown	25	Other/unknown	19

Appendix B: Mergers with PURE

Merger	Count	Percentage
None	199	58.2%
PURE-NURSE	41	12.0%
PURE-FORCE	72	21.1%
PURE-DOER	7	2.1%
Mixed	23	6.7%

Appendix C: Mergers with SURE

Merger	Count	Percentage
None	211	61.7%
SURE-NURSE	31	9.1%
SURE-FORCE	71	20.8%
SURE-DOER	10	2.9%
Mixed	19	5.6%

Appendix D: Model predicting TOUR-FORCE rhyme judgments

	Estimate	Std. error	z-value	Pr(> z)
Intercept	3.600	0.533	6.760	<0.001
Scaled year of birth	0.019	0.009	2.056	0.040
Region: Inland North	-3.018	0.496	-6.087	<0.001
Region: NYC	-1.025	0.382	-2.684	0.007
Region: Western PA	-0.680	0.539	-1.261	0.207
Home language: Bilingual	-1.708	0.367	-4.657	<0.001

glmer(rhyme judgement ~ scaled year of birth + region + language
+ (1 | pair) + (1 | participant), family = "binomial"). N=386.
Obs = 1928.

Appendix E: Model predicting SURE/PURE-FORCE rhyme judgments

	Estimate	Std. error	z-value	Pr(> z)
Intercept	0.893	0.348	2.566	0.010
Region: Inland North	-4.037	0.544	-7.422	<0.001
Region: NYC	-1.465	0.309	-4.747	<0.001
Region: Western PA	-0.922	0.419	-2.205	0.028

glmer(rhyme judgement ~ region + (1 | pair) + (1 | participant), family = "binomial"). N=216. Obs=2160.

Appendix F: Model predicting SURE/PURE-NURSE rhyme judgments

	Estimate	Std. error	z-value	Pr(> z)
Intercept	-4.352	0.540	-8.062	<0.001
Scaled year of birth	0.053	0.010	5.385	<0.001
Region: Inland North	2.382	0.524	4.548	<0.001
Region: NYC	0.785	0.367	2.137	0.033
Region: Western PA	0.664	0.481	1.380	0.168

glmer(rhyme judgement ~ scaled year of birth + region + (1 |
pair) + (1 | participant), family = "binomial"). N=216. Obs=2157.

Appendix G: Model predicting SURE/PURE-DOER rhyme judgments

	Estimate	Std. error	z-value	Pr(> z)
Intercept	-3.406	0.464	-7.338	<0.001
Scaled year of birth	0.014	0.007	2.006	0.045
Gender: M	0.570	0.225	2.527	0.012
Region: Inland North	1.720	0.391	4.402	<0.001
Region: NYC	0.923	0.271	3.402	0.001
Region: Western PA	-0.144	0.372	-0.388	0.698

glmer(rhyme judgment ~ scaled year of birth + gender + region +
(1 | pair) + (1 | participant), family = "binomial"). N=202.
Obs=2020.

Appendix H: Model predicting TOUR F1

	Estimate	Std. error	DF	t-value	Pr(> t)
Intercept	0.399	0.016	110.2	24.834	<0.001
TOUR-FORCE rhyme judgments	0.046	0.015	126.1	3.099	0.002
Region: Inland North	0.005	0.014	125.4	0.325	0.746
Region: NYC	0.021	0.008	129.1	2.615	0.010
Region: Western PA	0.014	0.012	124.6	1.117	0.266

lmer(F1 (Δ F) ~ TOUR-FORCE rhyme judgments + region + (1 | word) + (1 + vowel | participant)). N=135. Obs=598.

Appendix I: Model predicting TOUR F2

	Estimate	Std. error	DF	t-value	Pr(> t)
Intercept	0.960	0.042	32.05	22.956	<0.001
TOUR-FORCE rhyme judgments	-0.051	0.029	1.977	-1.772	0.078
Scaled year of birth	-0.001	<0.001	200.8	-2.083	0.038
Gender: M	0.046	0.016	202.5	2.902	0.004

lmer(F2 (Δ F) ~ TOUR-FORCE rhyme judgments + scaled year of birth + gender + (1 | word) + (1 + vowel | participant)). N=235. Obs=1050.

Appendix J: Model predicting FORCE F1

	Estimate	Std. error	DF	t-value	Pr(> t)
Intercept	0.459	0.012	6.806	38.634	<0.001
Region: Inland North	0.026	0.014	126.748	1.874	0.063
Region: NYC	0.026	0.008	130.226	3.196	0.002
Region: Western PA	-0.001	0.012	125.449	-0.091	0.927
<pre>lmer(F1_deltaF ~ Region + (1 word) + (1 + Vowel participant))</pre>					

Appendix K: Model predicting SURE/PURE F2

	Estimate	Std. error	DF	t-value	Pr(> t)
Intercept	1.375	0.050	50.11	27.369	<0.001
SURE-FORCE rhyme judgments	-0.183	0.038	120.8	-4.825	<0.001
SURE-NURSE rhyme judgments	0.231	0.048	120.2	4.840	<0.001
Scaled year of birth	0.003	<0.001	124.8	3.162	0.002
Vowel: SURE	-0.249	0.043	10.79	-5.752	<0.001

lmer(F2 (Δ F) ~ SURE-FORCE rhyme judgments + SURE_NURSE rhyme judgments + scaled year of birth + vowel + (1 | word) + (1 + vowel | participant)). N=129. Obs=1287.

Appendix L: Model predicting NURSE F1

	Estimate	Std. error	DF	t-value	Pr(> t)
Intercept	0.601	0.014	30.75	42.173	<0.001
SURE-NURSE rhyme judgments	-0.038	0.016	121.8	-2.325	0.022
Scaled year of birth	-0.001	<0.001	126.9	-3.223	0.002

lmer(F1 (Δ F) ~ region + (1 | word) + (1 + vowel | participant)). N=136. Obs=612.

Appendix M: Model predicting NURSE F2

	Estimate	Std. error	DF	t-value	Pr(> t)
Intercept	1.365	0.033	8.124	41.814	<0.001
Scaled year of birth	0.002	<0.001	2.410	3.911	<0.001

lmer(F2 (Δ F) ~ scaled year of birth + (1 | word) + (1 + Vowel | participant)). N=242. Obs=1062.